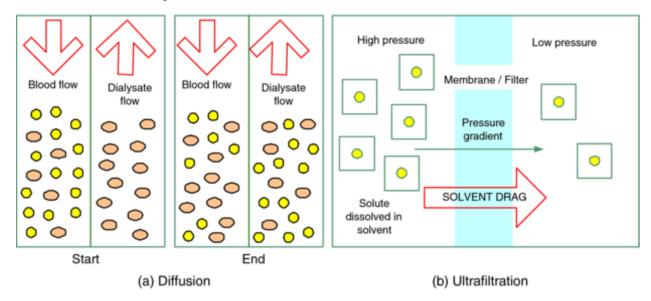
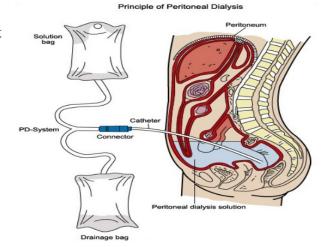

- What is it?
 - A mechanism to remove accumulated toxins in the body through filtration in the setting of kidney insufficiency
- Functions of the kidney
 - o Removal of metabolic wastes, drugs and other toxins
 - o Fluid balance
 - Electrolyte balance
 - o Acid-base regulation
 - o Blood pressure control
 - o Hormone production-erythropoietin, vitamin D, renin

- Who needs it?
 - Acute kidney injury
 - Types of injury
 - Prerenal- most common form
 - o Hypovolemia, decreased CO, CHF, Medications
 - NSAIDS- causes vasoconstriction of the afferent arteriole
 - ACEi/ARBs- causes vasodilation of the efferent arteriole
 - Intrinsic-inflammation and reduced perfusion
 - o Sepsis, ischemia, both exogenous and endogenous pathogens
 - Postrenal- blockage of urine output
 - Indications for dialysis
 - A=___acidosis_____
 - E= electrolyte imbalances
 - I= intoxication
 - O= overload
 - U= uremia


Chronic kidney disease				Persistent albuminuria categories description and range			
 Stages of kidney disease 				A1	A2	А3	
			nosis of CKD by GFR buminuria categories: KDIGO 2012	Normal to mildly increased	Moderately increased	Severely increased	
				<30 mg/g <3 mg/mmol	30–300 mg/g 3–30 mg/mmol	>300 mg/g >30 mg/mmol	
	2)	G1	Normal or high	≥90			
	/1.73 m nge	G2	Mildly decreased	60–89			
	categories (ml/min/1.73 m²) description and range	G3a	Mildly to moderately decreased	45–59			
	gories (ription	G3b	Moderately to severely decreased	30–44			
	R cate	G4	Severely decreased	15–29			
	GFR	G5	Kidney failure	<15			

Dialysis options

0


Definitions

- Diffusion-solutes are removed via a concentration gradient without the aid of pressure gradients (passive)
- Convection- solutes are removed via pressure gradients
- Ultrafiltration- <u>volume is removed</u> via pressure gradients (from high to low pressure) between the blood and fluid compartments

Intracorporeal

- **Peritoneal-** the blood is cleansed using a solution that is administered into and subsequently removed from the abdominal cavity
 - o Uses diffusion, osmosis, ultrafiltration
 - Solutions are typically comprised of a dextrose solution but vary depending on each patient.
 - o Advantages-hemodynamic stability, at home
 - Disadvantages-unreliable, slow removal, hyperglycemia

Extracorporeal

- **Hemodialysis-**blood is removed from the body and passed through a filtration device
 - o Diffusion-based and pressure driven water removal
 - o Advantages-large volume removal
 - o **Disadvantages** hemodynamic instability, rapid electrolyte shifts, preformed in clinic, clotting
- <u>Continuous VenoVenous Hemo-</u>"something or another"... (CVVH_) is a type of dialysis that is extended over a 24 hour period.

	Removal of fluid	Convection/ filtration	Diffusion
Hemofiltration (CVVH)	X	X	
Hemodialysis (CVVHD)	X		X
HemoDia-filtration (CVVHDF)	X	X	X

- o Advantages- mimics normal physiology, slow removal of fluids, hemodynamic stability
- o **Disadvantages-**continuous assessment, blood clots may form
- Other things to consider
 - o Dialysate composition
 - Dependent on osmolarity (i.e, the measure of the solute concentration)
 - Higher osmolarity=higher Na (dilutional)
 - Lower osmolarity= lower Na
 - Normal levels=280-295 mOsm/kg
 - __CVVH_______ is/are type(s) of dialysis that require(s) a dialysate
 - CVVHD, CVVHDF is/are type(s) of dialysis that do not require dialysate

Flow rates

 High flow rate=greater amounts of drug delivered to dialysis membrane= greater removal

Clotting

- Heparin/protamine
- Calcium citrate/ Carbonate

Complications

- Hypotension- due to inadequate fluid replacement, major fluid shifts
- Electrolyte imbalances- incorrect dialysate, citrate anticoagulation, pH shifts
- Hypothermia
- Hyperglycemia- dependent on dialysate solution
- Clogged filters

Pharmacology and dialysis

- The extend of drug dialyzability determines whether supplemental doses are necessary during or following dialysis
- o Properties that determine whether a drug will be removed with dialysis

o Protein bound

- Drugs that are highly protein bound will have a small plasma concentration of unbound drug available for dialysis
- When drugs are bound to proteins (e.g., albumin, glycoprotein) the large molecular size and drug-protein complex is too large to cross the dialysis membrane
- However, protein binding may decrease in uremic patients

o Molecular size

- Small molecules will pass through the membrane more easily than larger molecular weight substances
- Note that the pore size in peritoneal dialysis is larger and allows for the passage of

Volume of distribution

- Large volumes of distribution are associated with a wide distribution throughout the tissues and less within the blood will be minimally dialyzed
- Example: drugs that are lipophilic and have low protein binding will be less removed

Water solubility

■ The more hydrophilic= more dialyzable

Dosing Drugs for patients on RRT

iHD

- Assess drug properties (listed above)
- o CrCl is unreliable ~ may estimate that CrCl roughly 10 ml/min
- o If patients receive drugs that are dialyzable before iHD, patients may likely require supplemental doses

CVVHD

- o Estimating CrCl based on flow rate
 - Flow rate is 2 L/ hr
 - =2000 (ml/hr) x (1 hr /60 min) \sim 33 ml/min
- o Drug properties
- o Patient volume status

Test your knowledge								
Based on the following drug properties, determine whether or not the drug will be removed by dialysis								
1.	Protein binding ~50% Excretion- Urine 80-90% Vd=0.4-1 L/kg	vancomycin, yes						
	Antibiotic	Any guess on which drug this is?						
2.	Protein binding- 90-95% Excretion-Urine Vd- 0.6-0.7	phenytoin, no						
	Anticonvulsant	Any guess on which drug this is?						